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ROBOT MANIPULATOR CONTROL

Claude Samson and J.M. Ibarra Zannatha, Institut de Recherche 6n
Informatique et Systemes Aleatoires, Rennes, France, have developed a gen-
eral approach to the problem of controlling robot manipulators. Samson and
Zannatha have separated the !arger problem into two issues: controlling a
known time-invariant linear system and modelling.

The two sub-problems are related when control robustness is considered
with respect to modelling errors. Samson and Zannatha's approach allows
derivation of several adaptive or nonadaptive control schemes described in the
literature and suggests new schemes. It applies to continuous and discrete
cases and shows possibilities for computing controls from a set of operational
coordinates of the manipulator.

This report is a translated and abbreviated version of a paper titled
"Sur La Commande Des Manipulator" by Samson and Zannatha.

Mathematical Model of a Manipulator With N Degrees of Freedom

We begin with the general form of a mathematical model of a manipulator:

M(x) x + V(x,x) = u (2.1)

in which x is the vector of n generalized coordinates, x is its time derivative

(speed vector), x is its second derivative (acceleration vector), and M(x) is
the kinetic energy or inertia matrix, which is always positive definite.
V(x,x) is the vector combining the Coriolis and centrifugal forces; u is the
force and moments vector acting on the manipulator, other than V(x,x). One
can decompose u into the sum of three terms:

u = U(W + Uf(x ) + ua (2.2)
where u (x) is the force of gravity, uf(x) is friction, and u represents

uf9 f rcin auarpent
forces produced by the motors on the movement of the robot. The force of
interest here is uaa

If we combine (2.1) and (2.2), the manipulator model can be written:

M(x) x+N(x,x) = ua (2.3)

where
N(x,x) = V(x,x) - u (X) - Uf(x). (2.4)

Dividing the Initial Control Problem Into Linear Control and Modelling

Problems
Equation 2.3 is replaced by the following system of equations equivalent

tol t.
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x = (2. 5a)

Ual = M(x)u' (2.5b)

Ua2 = N(x,x) (2. 5c)

Ua = Ual + Ua2. (2.5d)

If M(x) and N(x, ) are known or easily calculated at each instant, then
it is sufficient to calculate the control u' associated with an invariant linear
system of second order (2.5a), and then to calculate u using (2.5b, c, and
d).

If M(x) and N(x,K) are not known and are too complex to calculate at

each instant, we can work with approximate matrices M and N and use the
following working model derived from the mathematical model (2.5):

X =U(2.6a)

U = M u (2.6b)

U 2 =N (2.6c)

Ua =Ua + U 2 . (2.6d)

Thus the problem of control of the manipulator is the sum of two sub-
problems:

1. A linear control problem associated with equation (2.6a), in which we
can use the classic theory of linear and invariant systems control to compute
Ul. 2. A modelling problem associated with computing the matrices M and ^N.

The control will be only as accurate as the approximation of the matrices M

and N to the matrices M(x) and N(xx).
Although the two problems require different techniques, they are not

totally independent. Errors associated with the modelling prob!em may have
more or less serious consequences depending on the type of control chosen
for u'.

Two Strategies of Control for Following a Reference Trajectory: Consigned
Control and Control With Reference Model

The strategy for control u is determined by the computation of u'. To
~a

simplify the study we recall the principle of two methods most often used for
the control of manipulators: consigned control and control with reference
model.

Consigned Control
When the manipulator is first at rest [x(to ) = ol, we wish to have x

0
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return to a consigned x according to a certain dynamic. We consider the
following control u': c

u1 = -Kp (X-x) - Kv (4.1)

(K and K are diagonal matrices).

We obtain, following (2.6a), the transfer function:

X(S) = (Kp /(s 2 +K s+Kp ))x (s). (4.2)

The time constant and the overshoot of the indexed response of the
system (4.2) are regulated by the choice of gains K and K . The gains arep v

therefore entirely determined by the dynamic of the return to the consigned
value.

Control With Reference Model
The method consists of giving the equation of a reference system (or

reference model) of the same dimensions as the model of the manipulator, and
computing the control u' so as to cancel the error c between the position
vector x of the manipulator and the position vector xr of the reference model.

The choice of the reference model must be compatible with the structure
of the manipulator. There should be a bounded control u' allowing cancel-
lation of the error e (see H. Erzberger, "Analysis and Design of Model Fol-
lowing Control Systems by State-Space Techniques" Proceedings of the Joint
Automatic Control Conference 119681, pp 572-581). Referring to equation
(2.6a), an evident choice for the reference model is:

x =U. (4.3)r r

Let

E = X - X (4.4)r

subtracting (4.3) from (2.6a) we obtain

=U - U. (4.5)
r

A possible choice for the control u' is then:

U' =U - L E - L V (4.6)r p v

where L and Lv are diagonal matrices. The dynamic equation of the error
E is given by:

3
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- -Lv

Using the Routh-Hurwitz criteria, it can be shown that (4.7) is the equation
of an exponentially stable system, and the elements of the diagonal matrices
L and L are positive. The choice of higher gains leads to faster exponen-p v

tial convergence toward zero.
The control in the reference model acts uniquely as a regulator because

its role is to bring the error to zero. The reference control u r is required

to follow a reference trajectory. Unlike the consigned control method, the
choice of gains L and L are subject to no constraints coming from the

dynamic of the reference trajectory. It can be shown that the method of
consigned control is a special case of the reference model method obtained by
choosing

U =-K x -K x + K x
r p r v r p C

with

L =K
P P

Lv  Kv .

Control Schemes as a Function of Modelling
The relations (2.6b, c, a,.d d) and (4.1) can be combined to obtain the

consigned control:

U = -MK (x-x c ) - MK x + N. (5.1)
a p C v

The relation (2.6b, c, and d) with (4.6) give the reference model con-
trol:

u ML - ML c+ Mur + N. (5.2)a p v r

First Modeing
The classic controls with constant coefficients are those computed from

simplified models of manipulators using the following hypothesis:

H1 : M(x) = M : constant diagonal matrix

H2 U(X) O; uf(x) O

H3  V(x'x) a 0

3I,
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Hypothesis If1 is justified for small displacements and when the N de-

grees of freedom of the manipUl3tor are practically decoupled. It also sup-
poses that the matrix< of inertia is only slightly sensitive to the variations of
mass carried. Hypothesis H2 indicates that the gravity terms (often compen-

sated in part by counterweights), and the friction terms are negligible.
Finally, hypothesis H 3 is justified if the displacement speed x of the manip-
ulator is small.

4Associating this model with (5.2) gives a nonclassical scheme of model
reference control with constant coefficients.

. OIr d Mode?2i g
Using the mathematical model of the manipulator we calculate for each

point rf the trajectory the matrices M(x) and N(x,x), which gives:

M (x)

N N(x,k) .

Controls using the model are called dynamic controls; it is possible to
have dynamic control with a reference model. The computation of the mat-
rices M(x) and N(x,x) is complex and in some situations cannot be done--for

N example, when the mass and shape of the object carried vary greatly and are

unknown.

Third Mode~ling
We identify on-line the matrices M and N beginning with a parameter-

ization of the matrices established in advance. The controls thus synthesized
are adaptive. More generally, we can design by adaptive control all controls
requiring measurements made on the manipulator to identify its structure or
the control law (see, for example, S. Dubowsky and D.J. Des Forges, "The
Application of Model-Referenced Adaptive Control. to Robotic Manipulators,"
Journal of Dynamic Systems, Measurement and Control, Vol 101 [September
19791, pp 193-200). According to the definition, the dynamic controls previ-
ously discussed are not adaptive. The mathematical model of the manipulator
from which they are computed will be a function of the measurements of x and
X.

The idea of adaptive control is in general motivated by two considera-
tions:

1. No mathematical model of the manipulator completely reflects the
reality because of the difficulty of modelling terms (such as friction) and
changes in the course of use (for example, picking up a load).

2. An exact model of the manipulator is less important for control than
an accurate identification of the structure of the manipulator arising from its
principal characteristics.

There is no general method for on-line identification of M and N. There
are, however, techniques for estimating recursively a vector e of constant

5



parameters, or slowly changing variables when we have a relation of the
following form (see L. Ljung, and T. Soderstrom, Theory and Practice of
Recursive Identification [Cambridge, MA: MIT Press, 19821):

T
y(t) (t) , (5.3)

T
where y(t) is a known vector, and 0(t) is a known matrix of observation
with dimensions compatible with those of y(t) and 0.

Such a relation will normally be obtained after parameterization of the
dynamic equation of the manipulator:

M x + N = u, (5.4)

a
which leads to the adaptive control schemes called "indirect." We now give
several examples of parameterization.

Example 1. The vector e is made up of the totality of components of the
matrices M and N. Relation (5.4) can be written in the form (5.3) with y(t)
= u (t) and * (t) made up of unity and the components of acceleration x(t).

In the continuous case, the parameterization assumes knowledge of the accel-

eration x(t). In using the syr.metry of the matrix M, the number of compon-
ents entering into 0 can be reduced substantially. Also, the knowledge of
zero components of M. from consideration of the geometry of the manipulator,
reduces the size of 8.

With such parameterization, the matrices M(t) and N(t) are directly

obtained from the identified vector 0(t).

Example 2. If the gravity and friction forces are negligible, use of (2.4)

reduces N(x,x) to V(x,x), and we can write the following (see R. Horowitz
and M. Tomizuka, "An Adaptive Control Scheme for Mechanical Manipulators
Compensation of Nonlinearity and Decoupling Control," American Society of
Mechanical Engineers (ASME), Paper No. 80, Wa/DSC-6 [19801):

j1

V (x,x) = (5.5)

xTvn (x)

where the matrices V i(x) are symmetric and only depend on the position x.
A possible parameterization is then obtained by putting into the vector 0

the unknown components of M and of the matrices V (x). The paramet,.r-
ization leads to a vector 8, generally larger than in the preceding example.
Its advantage is that the components entering in 0 are not functions of the
speed x, and for movements of small amplitude we can expect the vector
0(x) to be nearly constant.

6



Example 3. For a given load, the parameters in the mathematical model of
the manipulator are fixed and we can try to identify them on-line and enter
them into the vector e. For a given configuration, 0 is constant and thus
independent of x and x and the computed control.

Identifying 0 in the above case involves computation at each instant of
the coefficients multiplying the components of e in the mathematical model of
the manipulator. The computed controls are dynamic adaptive controls, which
in some cases are too complex for easy computation.

Observation. The set of adaptive controls that we have considered are
studied in more detail in J.M. Ibarra Zannatha, "Sur La Command Des Robtos
Manipulateurs" (Doctoral thesis, Univ. of Rennes, April 1982). The following
observations are based on simulations during which many identification
algorithms were tested.

1. The parameterizations in examples 1 and 2 do not permit easy identi-
fication of M and N (poorly or noisily followed). The poor identification is
due to two main causes: the parameters that we seek te identify vary too
rapidly with rapid movement of the manipulator, and the parameters depend
on the intermediate values of x and x. With the adaptive control depending
on estimated parameters, the identification problem for the two parameter-
izations is ill conditioned.

, j 2. In spite of the mediocre performance of the identification, the adap-
tive controls with the model of reference retain good performance when the
gains L and L are large (the reference trajectory is closely followed). The

p v
interpretation of the phenomenon (observable in many existing studies) is
important to understanding the problems in the control of manipulators. We
attribute this largely to the robust character of the large gain control.

Robustness of Large Gain Control
A rapid heuristic study justifies the robust character of large gain

controls with respect to errors in the modelling of the. manipulator.

If we assume T: - (identity matrix) arid N = 0, the corresponding
constant coefficient control with the model of reference is written according to
(5.2):

U a L P - v + U r (6.1)

Using the equations of the mathematical model of the manipulator and the
reference model (4.3), we obtain thv fullowing equation for the error E.

M *-U - N, (6.2)a r

and using (6.1) and (6.2)
-1N

_M =- 1 L Pe-M 1 L -1 ;(M I)u r-Z4 N. (6.3)
p v r

The choice of large gains Lp and Lv makes the term -M-L£P-c-14 LV E

t7



dominant over the term (M--I)u r-M-1 N as soon as the position error c or the

velocity error c becomes large. Then the equation (6.3) approximately
reduces to:

-M1L P-M-1L (6.4)
p V

Suppose for simplification that M is constant or that its relative variation
is small compared with that of e (an hypothesis that we can verify later). M

being positive definite, M-1 is als¢ positive definite and consequently there
exists an orthogonal matrix P such that:

P TM P = 1 M is a diagonal matrix (6.5a)
D D

P Tp = I. (6.5b)

If we let= PE (6.6)

and make use of (6.4) and 6.5b) we obtain:

= -PM-1 - PTM- LP (6.7)

where L and L are chosen so that:

L = 1 1P , L = 1 I (1 >0,1 >0). (6.8)
SP p V p V

L and L can permute with the matrix P in the equation (6.7), and
p v

using (6.5a) we obtain:

L -L (6.9)

p v
with L' = lMD-1 1  =1MD1

p p D L' 1v  : positive diagonal matrices.

The relation (6.9) is a system of n decoupled equations of second order,
exponentially stable. Consequently E converges to 0 exponentially in the
same way as E, following (6.6), the rate of convergence being the more rapid
the larger the gains 1 and 1.

p v
The preceding heuristic reasoning although not a valid demonstration,

helps us justify that the error of approximation c cannot become large. If an
error appears at any instant, then it diminishes exponentially and more
rapidly as the gains 1 and I became larger.

p v
We now examine the static error caused by the gravity term In N.

Suppose that x and x converge toward constant values. Then x = 0,
*r
xr = 0, u = 0 (in view of (4.3)], N(xx) is reduced to -u (X) [in view ofi, r ' r

(2.4)] If we suppose the friction term is of the form u (x) =-k), and
equation (6.3) becomes

8
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0 = - M Lp stat + M u gx), (6.4)

from which

~u (x)
Cstat - (6.5)

p
showing that the static error due to the gravity term u (x) is inversely
proportional to the gain 1 .p

Numerous simulations given by Ibarra-Zannatha confirm the robustness of
large gain controls. The robustness property will be studied further.

Discretization of the Control Problem
Using relation (2.1) the equation of the mathematical model of the manip-

ulator can also be written in the form of the equation of state:

= AX + B (x)ua + C(x,x) (7.1)

with

x (X)
A = ,B(x) (),C(x,x) =((L7 C(0X Mk) x  

-- (x)N(x,x)

Let us assume u a is numerically computed and maintained constant during

a sampling step of length h. In integrating (7.1) over a sampling step we
obtain:

X(t+h)=AdX(t)+BdUa(t)+Cd (7.2)

with

Ah. I n I n
0 1~

Bd = J theA(t+h-s) B(x(s))ds ; and
t

Cd f ft+heA(t+h-s) CIx(s), k(s)] ds.

I ,_
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In general, it is not possible to calculate exactly B and Cd .  However,
Bd

if the sampling step h is chosen sufficiently small, we can assume that x and
x vary little over this sampling step, as do B(x) and C(x,*x). B and C
can then be approximated as follows:

t+h A(t+h-s) h
Bd e d s  B[x(t)] = ix(t)] and (7.3a)t %h If

( tt + h A t + h - s ) 

( 7 .4

C- d) Mi(t,t(t(7]4=
- 2 (th N [x(t)]N[x(t)'(t)] (7.3b)

From equations (7.2) and (7.3), we find that the discretization of the
problem of control of a manipulator leads to replacing the system of contin-
uous equations (2.5) by the discrete system:

.a X(t+h) = AdXlt) + 2 (t) (7.4a)

U al(t) = M [x(t)ut(t) (7.4b)U a2(t) = N ix(t) , (t)] (7.4c)

u a ( t )  = U al (t) + U a2 (t) (7.4d)

Thr similarity between this system and the continuous system (2.5)
shows that the approach we have considered in the continuous case also
applies in the discrete case. The system shows in efect that the problem of
computing the control u this decomposed into:

1. A control problem of a linear decoupled and discretized system
(7.4a).

2. A modelling problem connected with the relations (7.b) and (7.4c).
In particular, the property of robustness of control with large gains is

preserved. We note also that the previous discretization eliminates the prob-
lem of determining the second derivative of x.

i Computation of the Control in the Frame of Reference of the Operational
Coordinates

[ In many applications, the user is interested chiefly In the control of thei

terminal arm of the manipulator. The position and speed of the arm are
usually characterized by coordinates different from the manipulator's gener-
alized coordinates, which are less practical to use. General coordinates

10
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include, for example, the three coordinates in a fixed frame of reference of
the extremity of the terminal arm, with the three Euler angles in this frame
of reference characterizing the inclination of the terminal arm. To solve the
control problem we have two possibilities:

1. Recompute the reference trajectory in the frame of reference of
generalized coordinates, then compute the control u as before. The biggesta

difficulty with this method is in passing from the operational coordinates to
the generalized coordinates, the inverse operation being generally much
easier.

2. Compute directly the control u from the operational coordinates.a
The possibility returns to the recomputation of the model of the manipulator
in the frame of reference of operational coordinates.

We show that for the second possibility, the approach developed earlier
in this report remains applicable.

Let y be the vector of operational coordinates corresponding to the
vector x of the generalized coordinates of the manipulator, and let f(.) be
the function assumed with continuous derivative everywhere, which allows

passing from x to y.

y = f(x) (8.1)

Let J(x) be the Jacobian matrix of f defined as

af
J(x) = (8.2)

Following (8.1) and (8.2)

j = (x) x. (8.3)

In taking the derivative of (8.3) we obtain:

y = J(x) x + W (x,x) (8.4)

with

W(X)= i (8.5)
( Jwn (x) )

where W is the derivative of the it h line of J with respect to x. We suppose
for simplification that the matrix J(x) has an inverse. (If J has no inver-e
we can use a pseudo-inverse of the matrix.)

Following (8.4) we have
x = (x) y- J 1(x) W(x,x). (8.5)

= iIi



Recalling equation (2.3, of the mathematical model of the manipulator

M (x) x + N(x,x) = u. (8.6)

A Combining (8.5) and (8.6) we obtain

M' (x) y + N' (x,x) = V (8.7a)Ta

U = JT (x) V (8. 7b)
a a

with

M' (x) = J-(x) M(x) J (x) and (8.7c)

N'(x,x)=-M'(x)W(x,x) + J-T(x) N(x,x). (8.7d)

Comparison of (8.7a) and (8.6) shows that the two relations have the
same form. For instance, the matrix of inertia M(x) is replaced by the
matrix M'(x), which is also positive definite if the Jacobian J(x) has an
inverse. It follows that the techniques of computing the control ua (shown

previously) are transposable to the computation of the control Va using the
'Ioperational coordinates of the manipulator. The control u that interests usa

is then computed from V according to relation (8.7b). The idea is found in
• a

Mi. Takegaki and S. Arimoto, "An Adaptive Trajectory Control of Manipula-
tors," International Journal of Control, Vol 34, No. 2 (1981), pp 219-230.

Conclusion
This report has presented a synthetic approach for calculating the

control of manipulators. The initial control problem is broken down into
linear control and modelling problems. The approach allows derivation of
numerous schemes (adaptive or not) of control proposed in the literature and
suggests new schemes. It has been shown that the problem of modelling is
difficult but is less crucial if one can synthesize robust controls that are not
sensitive to errors of modelling. A heuristic study, which will later be
refined, shows that large gain controls are robust and that controls with a
reference model are naturally conditioned to function with large gains.

To give the study its correct weight, one must take a larger view and
consider the control problem in a more general context than we have so far.
Some difficulties do not appear with our mathematical model of the manipu-
lator. The model is only a simplistic (although very useful) represertation of
the physical system of a manipulator. The model does not take into account,
for example, the flexibility of the manipulator arms and the transmission
organs. We have not considered possible errors in measuring x and x, which
could distort in an important way the performance of the control. It is easily
conceivable that the set of the nonmodelled terms, which are fundamentally

12
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different from those we have included, could change the basic structure of
the system (in the case of the flexibilities when they are important), and
make risky the control (in the case of noisy measurements). Such terms are
not modelled now in studies of adaptive control for manipulators, but they can
make the adaptation of control gains desirable and justify the study of more
elaborate controls.

The above is, in our view, an important outcome of the present study,
which must be viewed as a simple element of analysis, among others, of the
general problen of the control of manipulators.
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